
Dra
ft

C++2Any Overview

Vadim Zeitlin

October 20, 2006

Contents

0 What is C++2Any ? 3

1 Using C++2Any 3
1.1 Restrictions on the C++ sources3
1.2 Support for non-standard types3

2 Getting Started with C++2Any 4
2.1 A very simple example .4
2.2 Preparing C++ sources .5
2.3 Presenting other C++2Any features5

3 Special C++ Comments 6
3.1 Special comments syntax .6
3.2 General comments .6
3.3 COM-specific comments .7
3.4 Java-specific comments .8

4 C++2Any Invocation 8
4.1 Input Options . 8
4.2 Output Options .9
4.3 Definition Options . 9
4.4 Custom Type Options .9

5 COM Backend 10
5.1 Backend-specific Output Options10
5.2 Main IDL File .11
5.3 Properties support .12
5.4 Collection support .12

1

Dra
ft

5.5 Generic Limitations .13
5.6 Namespaces .13
5.7 Classes .14
5.8 Methods .14
5.9 Parameters and Return Values14
5.10 Error Handling .14

6 Java Backend 15
6.1 Backend-specific Output Options15
6.2 Packages .15
6.3 Enumerations .16
6.4 Limitations .17

7 C Backend 17
7.1 Classes .17
7.2 Methods .18
7.3 Parameters and Return Values18
7.4 Class Members .20
7.5 Other Declarations .20
7.6 Templates .20
7.7 Error Handling .21

2

Dra
ft

0 What is C++2Any ?

C++2Any is a generalized interface generator, along the lines of SWIG. It allows
to provide interfaces to other languages for the existing C++ libraries.

The main difference from SWIG is that C++2Any directly parses the C++
headers instead of requiring the user to create special.i files with the interface
descriptions. C++2Any also offers better customizability and support for C and
COM backends.

1 Using C++2Any

1.1 Restrictions on the C++ sources

Although C++2Any is supposed to parse the normal headers, it doesn’t parse ar-
bitrary C++ code. Here is the list of most important restrictions:

• Exporting template classes is not supported

• Function overloading is not supported

• Only default constructor is exported

• Operators are ignored

1.2 Support for non-standard types

Built-in support for the standard C++ types such asint and double is not
enough except for the simplest of projects. Because of this C++2Any may be
extended to handle any other types which may appear in the source C++ code eas-
ily. Of course, different types must be treated differently and not all of them can
be simply mapped to a type supported by the current backend, sometimes a non
trivial transformation has to happen.

To allow for such transformations of arbitrary complexity, the wrapper code
generated by C++2Any uses user-defined C++ template functions to perform the
translation between C++ and backend types. There are two such functions:To<>()
transforms its arguments to the specified C++ type andFrom<>() does the re-
verse transformation. Both of these functions must be defined insideC2A:: backend
namespace where thebackend is the name of the current backend.

For example, in C backend the standardstd::string class is mapped to
char * and so the following specializations of the template functions must be
defined:

3

Dra
ft

• C2A::C::To<std::string>(const char *) which simply cre-
ates a C++ string from a C string

• C2A::C::From<char *>(const std::string& s) which should
allocate and return a new C string containing the copy of the given C++
string object

2 Getting Started with C++2Any

In this chapter we show how to quickly start using C++2Any with your classes to
produce COM servers wrapping them. Note that you need to have support classes
for the COM wrappers to work and that the C++2Any templates being used may
have to be adjusted for your COM support classes if they are different from the
ones provided by TT-SOLUTIONS.

2.1 A very simple example

Please start by checking that you can create a working COM server from the file
examples/hello/hello1.h . Here are the steps you should follow:

1. Copy the fileshello1.h and hello_impl1.cpp to just hello.h
andhello_impl.cpp respectively. Although not strictly necessary, of
course, this will allow you to try otherhelloN examples easier later just
by copying another pair of files to the same names but by keeping the same
project file and all the rest.

2. Change to directoryexamples \hello and run C++2Any using a com-
mand like this:

cpp2any /t../../templates /oCOM /DLIBRARY=HelloLib
hello.h

which will generate the filesinclude/COM/hello.h , src/COM/hello.cpp
(the directories must exist) andhello.idl file under the directoryCOM
specified as output one.

3. If you are using Microsoft Visual C++ 6 or 7, you may directly open the
example project filehellocom.dsp . Otherwise you will have to create
your own project file or makefile to build the COM DLL. This is not com-
plicated, you just have to include all of the following files in it:

4

Dra
ft

• the filehello_impl.cpp which implements the functions declared
in hello.h

• COM support files (seehellocom.dsp for a full list)

• the files generated by C++2Any and thehellocom.idl file

4. Building this project should create a DLL with appropriate name. Before it
can be used as a COM server, it has to be registered:

regsvr32 hellocom.dll

5. Now you should be able to use the COM server in the same way as any other
one. For example, you may openhello1.bas program in the Visual
Basic environment and run it there: the C++ function will be called.

2.2 Preparing C++ sources

Going throughexamples/hello/hello1.h you may now see that it is just
a plain C++ header file with Doxygen (also known as javadoc) comments. The
Doxygen comments are not mandatory, they are simply used to document the code
so you could perfectly well omit them entirely. Only one of them is special to
C++2Any : it is the@iid long-string-of-hex-digits one in the line
15. This special comment is recognized by C++2Any and specifies the interface
id for the COM interfaceIHello representing the C++ classHello .

This comment was the only modification needed for this – admittedly, ex-
tremely simple – header. But even it is not really necessary as the value of the IID
can be alternatively1 specified on the C++2Any command line, just as the value
of any other variable. So the original header could have been left unmodified and
you could run C++2Any like this:

cpp2any /DIID_Hello=xx-x-x-x-xxx ... hello1.h

Other special comments may appear in C++ sources, please see chapter 3 for
details. However there are usually going to be only very few of them.

2.3 Presenting other C++2Any features

Thehello1 example is, on purpose, the most trivial one possibly, so there is not
much to see here. Other examples show more interesting aspects of C++2Any :

1In fact, it can appear both in the header file and on the command line and in this case the latter
one takes precedence

5

Dra
ft

hello2 Here you can see how C++2Any automatically handles the C strings (const
char * argument).

hello2b Alternatively, C++std::string is also handled correctly.

hello3 The parameters of other user-defined classes are supported

hello3b ... just as return types. Note that to build this and the previous examples you
will need to uncomment theNumber coclass definition inhellocom.idl .

hello4 Standard container types (onlystd::vector and similar user-defined
types) may be used without problem.

hello5 C++ inheritance is correctly translated into the backends which support in-
heritance (such as COM) or emulated as well as possible for the others (C).

3 Special C++ Comments

Normally keeping the C++ sources pristine is a good idea, however you may need,
or want, to add some special comments in them to when using C++2Any . One
such comment was already shown in the “Getting Started” chapter, here all of
them are detailed.

3.1 Special comments syntax

The special keywords must appear in the comment preceding the class, method or
another declaration, in order to be recognized by C++2Any . They use the same
syntax as usual Doxygen comments, that is they may be prefixed either by@or by
\. If there is an argument, it should follow the comment after one or more spaces.

3.2 General comments

The special comments in this section apply to all backends.

renameAllows to rename a class, enum or method when exporting it. By default,
the same names are used in the generated code as in C++ sources but this
special keyword allows to change this.

noexport This keyword may be used with any C++ declaration. If it appears before a
class method, it is not exported, i.e. will not be visible at all in the generated
wrappers and will be invisible from the outside. If it appears before a class
or enum declaration, the entire class or enum is omitted. Note, however, that

6

Dra
ft

if another class derives from a “noexported” class, the (public) methods of
the base class would still be exported as part of the derived class. On the
other hand, if a method is marked with this keyword in a base class, it is not
exported even if its declaration appears again in a derived class, so it isn’t
necessary to repeat it in all derived classes.

nocreateThis keyword may be used with C++ classes only. When it appears, the
class is still exported but the objects of this class cannot be created directly
by the user. Of course, for the class to be at all useful, you should have
some functions elsewhere returning objects of this class – otherwise the
user would never see it. This keyword is usually used with abstract base
classes but not only.

noimpl Indicates that although this method should be exported, the implementation
for it shouldn’t be generated by C++2Any . This, of course, means that it
will have to be written manually and included alongside the code generated
by C++2Any . This keyword should be rarely used, but sometimes the
exported should do something more than just calling the corresponding C++
method and it allows for this. This comment is only valid for the functions,
not classes.

All of the keywords above except forrename can be followed by a comma-
separated list of backends they apply to. If no such list is present, the option
applies to all backends by default. For example,

/* @noexport COM */

can be used to prevent a class or a function from being exported in the COM
interface but still be exported as a Java class or a method.

3.3 COM-specific comments

Some other special comments are currently only used with the COM backend:

iid A valid UUID2 must follow. This comment may only appear in front of
a class declaration and allows to specify the IID for the COM interface
generated for this class. If it is not used in the C++ sources, the variable
IID_<ClassName> must be defined elsewhere as it is required by COM.

property Indicates that the method should be exported as a property accessor, see
section 5.3 for more details. This comment can only be used at method
level.

2universally unique identifier

7

Dra
ft

iterator This keyword (and related indexed_iterator one) are used to implement sup-
port for OLE Automation. They have a required argument which is the
name of the class method providing access to collection elements, see 5.4
for further details.

3.4 Java-specific comments

A specialenumprefix comment can be used with the enum declarations to in-
dicate the common prefix for the enum elements names which should be removed
when generating their Java names. Please see 6.3 for more details.

4 C++2Any Invocation

C++2Any is a command line tool and so should be run from the command line
or shell prompt. As any command line program, it has a number of command
line options (described in this chapter) but in the simplest case you can run the
program just by giving it the name of the input file to process:

cpp2any filename.h

To customize C++2Any you should use the options described below.
Notice that it is also possible to put the options in aC2AFLAGSenvironment

variable: if it exists, its contents will be used as if it appeared on the command
line, however if the same option is present both in environment variable and on
command line, the latter has higher priority, i.e. it is possible to override the
environment flags on the command line.

The C++2Any options come in two kinds: global ones and the backend-
specific options. The global options affect all backends and have simple names
while the backend-specific options always start with the backend name followed
by underscore as prefix and only affect the behaviour of the specific backend. All
global options are documented here while the backend options are documented in
the chapters covering the corresponding backend.

4.1 Input Options

/I: dir Specifies an additional directory with C++ header files. This is similar
to a quasi-standard/I C/C++ compilers option and may appear multiple
(or zero) times in the command line.

/t: dir Specifies the directory with the template files

8

Dra
ft

4.2 Output Options

/f: list The output format(s) to use. The list may be either a single format
(e.g. COM), a combination of them (COM,C,XLL) or the special keyword
all meaning to generate all formats.

/o: dir Specifies the directory for the output files, the values of other output
options are relative to this directory unless they are specified as absolute
paths.

/n: name The basename of the generated files. By default, it is the same as input
file name.

The backends provide other output options allowing finer grained control over
the location of the output files.

4.3 Definition Options

The/D (“define”) option may be used to set the template variable values from the
command line. Its syntax is/D : VARor /D : VAR=VALUEto either just define the
variable (so that conditional expansion constructs using it would evaluate to true)
or to define it with the given value.

There is also/d option which can be used to define C preprocessor symbols
which will be used during the parsing of input C++ headers. As for the/D above,
the option takes the symbol name and, optionally, its value which defaults to1 if
not specified. Notice that the special__CPP2ANY__is automatically predefined
in any case.

4.4 Custom Type Options

The/m (“map”) option is used to map custom types to the backend-specific types.
As such, this option doesn’t really exist as a global option but each backend de-
fines it and it has the same meaning for all of them. For example,/COM_m:string=BSTR
means that COM backend should map all string objects toBSTRCOM string type.
In a similar way, there is an/me (“map enum”) option which can be used to let
C++2Any know that the given type (which presumably comes from the sources
not parsed by it) is, in fact, an enumeration. The latter option may have a value
to specify which type this enum is to be mapped to or it may not have it in which
case it simply specifies that the given type is to be treated as an enum.

There are also two other versions of this option for the template types./mp
(“map pointer”) may be used to indicate that the given template type must be
treated as a smart pointer, for example/COM_mp:auto_ptr .

9

Dra
ft

And /mc (“map container”) means that the given template is a container type,
for example/COM_mc:vector . Note that all of these examples are really not
needed because C++2Any has built-in knowledge of the standard types such as
string , auto_ptr<> or vector<> . However the same syntax may be used
for any other user-defined types as well.

4.5 Miscellaneous Options

/version Shows the program version and copyright notice and exits.

@file Thefile can contain further options (but not input filenames) which are pro-
cessed as if they appeared on the command line itself. The empty lines and
lines starting with’#’ (comments) are ignored.

5 COM Backend

This section describes how the generation of COM wrappers for C++ code works.
To be more precise, we use COM and OLE Automation here interchangeably, even
though OLE Automation is a rather restricting subset of COM only. However to
be able to use COM components from languages such as Visual Basic, Visual
Basic for Applications, VBScript or JScript, the COM interfaces must be OLE
Automation compatible so this is what we are mostly interested in.

COM backend generates the following kinds of output files:

class.idl Interface definition file used by COM. It must be included in the target
project and compiled withMIDL to produce the C++ interfaces descrip-
tion file project_interfaces.h , the IIDs and CLSIDs definition file
project_i.c and, most importantly, the type libraryproject.tlb .

class.h For each exported class the header with the declaration of the class im-
plementing the interface corresponding to this class is generated.

class.cppC++ file implementing the class declared above by forwarding all of its
methods to the real class.

5.1 Backend-specific Output Options

In addition to the general options described in the section 4.2, COM backend
provides the following ones:

/COM_idl: path The path for the generated IDL file, by default it is the same
as the value of/o option.

10

Dra
ft

/COM_cpp: path The path for the generated C++ files, by default it issrc/COM .

/COM_h: path The path for the generated header files, by default it isinclude/COM .

For all the options taking apathargument, it may be either an (existing) direc-
tory or the full path name of the output file – this latter possibility allows to have
different names for the IDL and CPP files, for example.

5.2 Main IDL File

C++2Any generates a COM IDL3 file for each of the C++ headers, however there
is one IDL file which must be created manually and which should include all of
them. The reason for not generating is that, quite simply, the tool doesn’t know
about all the files in the project and so if it had to generate it, you would have to
always run it over all the headers at once which owuld be impractical. Also, this
main IDL file is very simple as it just includes all the other (complex) IDL files
which are generated automatically.

The IDL file in question should have the following contents:

// standard IDL files always needed
import "unknwn.idl";
import "oaidl.idl";

// import all generated IDL files, one for each input header
import "hello.idl";
...
import "goodbye.idl";

[
helpstring("Your user-readable description goes here"),
uuid(0162c8a5-bf51-44e8-b660-46063727bdf6), // LIBID_HELLO
version(1.0)

]
library HelloLib // this should be the same as LIBRARY variable
{

importlib("stdole2.tlb");

// the remaining block must be repeated for each
// exported creatable class
[

3Interface Description Language

11

Dra
ft

helpstring("Description of this class"),
uuid(691cf048-6f72-48cc-9d9d-5642741e0804) // CLSID_Hello

]
coclass Hello
{

[default] interface IHello;
};

};

The UUIDs appearing above must, of course, be changed for your project.
The new UUIDs are generated with the help of a standarduuidgen command
line tool, simply run it to create them (uuidgen can be found in the Microsoft
Visual Studio Tools directory).

Thehelpstring parts are not mandatory but may be helpful for the user.
Finally, notice thatcoclass declaration should only be used for the classes

which may be directly created by the external code. If an object of a class can
only be returned by a method of another class and can’t be created by the user,
this declaration shouldn’t be used.

5.3 Properties support

OLE Automation has the notion of “properties” which are mapped toput_PropName
andget_PropName methods in C++. C++2Any does the reverse mapping, that
is it can map C++ setter or getter methods to an OLE property in the generated
code. This is not done automatically, however, because it is not always appro-
priate but a special keyword@property must be used in the comment for the
methods which should be mapped to property accessors.

All of read-only, read-write and even write-only properties are supported. You
don’t have to specify whether the method is reading or writing the property as
the tool supposes that all const methods are for reading and everything else is for
writing.

Finally, a property typically doesn’t have the same name as the method, i.e.
for an accessor namedGetResult() the property name should beResult .
C++2Any knows several standards prefixes (Set , Put for writing andGet , Is
for reading) and discards them automatically when generating the property name
(if the method is called justSet or Get , the property name becomesValue). If
it still doesn’t get it right, you may specify the property name explicitly by putting
it after @property , e.g. @property Result . And if C++2Any mistakenly
maps a C++ method to a property, you can force exporting it as a COM method
by using another special comment:@method.

12

Dra
ft

5.4 Collection support

OLE Automation clients often expect to access sequences of objects ascollections
rather than arrays. C++2Any currently has support for collections with integer
indices. To indicate that collection methods should be generated for a class, either
indexed_iterator or just iterator special comment should be used in
the class declaration. The latter one declares a collection whose elements can
only be accessed sequentially while the former one defines an additionalItem
COM method allowing to access the collection elements by index.

In either case, the name of the method providing access to the collection con-
tents should be specified as parameter. This method must return a standard con-
tainer object which contains the collection elements. Note that this iterator method
will not be exported in the usual way by C++2Any .

Here is a brief example:

class Leg { ... }; // exported normally

/// @iterator GetLegs
class Animal
{
public:

...
const std::list<Leg>& GetLegs() const;

};

Remark: in this exampleindexed_iterator keyword cannot be used be-
causelist doesn’t provide random access to elements, avector would have
to be used if random access is essential.

Finally please note that if a base class has eitheriterator or indexed_iterator
comment, it is inherited by all of the derived classes which automatically become
OLE Automation collections as well. C++2Any will flag as an error any attempt
to specify either of these comments for a class which already inherits them from
a base class.

5.5 Generic Limitations

OLE Automation is not case-sensitive, so exporting two functions or classes dif-
fering only by case is not going to work. Overloaded functions are not supported
by COM neither.

13

Dra
ft

5.6 Namespaces

C++ namespaces become COM type libraries. As the type libraries can’t nest, the
type library name is, by default, the concatenation of all namespaces containing
it, e.g. for

namespace Out
{

namespace In
{

class Foo { ... };
}

}

the type library would be namedOut_In .

5.7 Classes

Exported C++ classes map one to one to COM interfaces. Single inheritance is
supported and maps to COM interfaces inheritance.

The main difference between classes and interfaces is that the latter don’t have
a constructor and can’t be created. The creatable objects in COM are the so-called
coclasses and C++2Any creates a coclass for each C++ class by default.

5.8 Methods

Only input parameters (values and constant pointers or references) are allowed in
OLE Automation compatible COM interfaces as OLE Automation supports only
a single return value (at most).

Static class members are not exported as they are not directly supported by
COM.

5.9 Parameters and Return Values

Simple types are passed as is, with the exception ofbool which is mapped to
COM-specificVARIANT_BOOL. The strings, whether of C (const char *)
or C++ (std::string) kind, are mapped to the OLE Automation Basic string
(BSTR) data type. C arrays and C++ vectors are mapped to OLESAFEARRAYs.

Variables of user-defined exports types are always passed as a pointer to their
corresponding interface class. Parameters of all other types cannot be passed to
COM without explicitly defining how they should be handled.

14

Dra
ft

5.10 Error Handling

In OLE Automation, each method returns anHRESULTvalue which contains
the error code. All C++ exceptions raised inside the user functions called from
COM wrappers are translated to COM error codes. Common exceptions (such as
std::bad_alloc) are recognized automatically and mapped to the appropriate
value (E_OUTOFMEMORY) but the user should define the COM error codes for the
non-standard exceptions. By default, all of them are mapped toE_UNEXPECTED
error code which is a generic catch all COM error and doesn’t provide any useful
information to the method caller.

6 Java Backend

This section describes how the generation of Java wrappers for C++ code works.
Globally speaking, for each C++ class, C++2Any generates a shadow Java class
which has the same – or as close as possible – methods as the C++ class. All
methods of the Java class are declared asnative which means that they are
implemented in C++, using JNI, where they are forwarded to the methods of the
original class.

Java backend generates the two different output files for each input one:

class.java For each exported C++ class the Java file containing a matching Java
class definition.

class.cppC++ file implementing the native methods of the class above by for-
warding all of its methods to the real class.

6.1 Backend-specific Output Options

In addition to the general options described in the section 4.2, Java backend pro-
vides the following ones:

/Java_cpp: path The path for the generated C++ files, by default it is the
current directory.

/Java_java: path The path for the generated Java files, also current directory
by default.

15

Dra
ft

6.2 Packages

In Java, related classes are usually organized in packages and C++2Any has sup-
port for this. If thePACKAGEvariable is defined (e.g. by using/D command line
switch), the following changes occur:

• Each generated Java file is marked as being part of the package and each
class is declared aspublic .

• .java files are created in the subdirectory with the same name as the pack-
age except that all dots are replaced by filesystem path separator (e.g. slash
or backslash) and have the same name as the class they implement.

Please note that both of the above items are required by Java and can’t be
changed.

6.3 Enumerations

Java has no support for Cenums so their elements are represented, as it is custom
in Java world, by public static final constants of an otherwise empty interface.
Unfortunately, the C++ methods taking enum parameters only can be mapped to
Java methods taking arbitrary integers resulting in a loss of type safety. If this is a
serious problem justifying the overhead of the alternative solution, the templates
may be modified to produce object wrappers for the enum elements instead of the
simple constants.

Please note that there is a special rule for the names of the enum elements in
Java code: it is a common practice to prefix the elements names with the name of
the enum itself in C++ code, to avoid clashes with other identifiers and to make it
clear which enum the element corresponds to, e.g.:

enum Pet
{

Pet_Cat,
Pet_Dog

};

...

enum UnixCommand
{

UnixCommand_Cat,
UnixCommand_Grep

};

16

Dra
ft

However in Java the enum values are enclosed in an interface having the name
of the enum itself and usingUnixCommand.UnixCommand_Cat is unneces-
sarily verbose. Because of this, C++2Any automatically removes the prefix from
enum elements in Java output so that justUnixCommand.Cat can be used in-
stead.

If the enum elements prefix is not the same as the enum name, the special
enumprefix comment can be used to indicate it:

/// @enumprefix Unix
enum UnixCommand
{

Unix_Cat,
Unix_Grep

};

And the same comment can be also used to prevent the automatic renaming of the
enum elements from taking place at all by simply writingenumprefix None
(provided that enum elements don’t really start withNone).

6.4 Limitations

Java imposes having a single class in a file being part of a package and so does
C++2Any . As enums are represented as interfaces, this means that C++ headers
can only have a single class or a single enum declared in them.

Other current limitations which may disappear in future versions:

• Default values for function parameters are not supported.

• Overloaded operators are not supported.

• No Unicode support, although it is available on Java side.

7 C Backend

This section describes how the generation of C wrappers for C++ code works.

7.1 Classes

As C doesn’t have built-in support for obejct-oriented programming, we emulate
C++ class methods using the C functions. For each classClassName we intro-
duce a special type representing it:

17

Dra
ft

typedef struct ClassName_Dummy *CLASSNAME_HANDLE;

and also for constant pointers:

typedef const struct ClassName_Dummy *CONST_CLASSNAME_HANDLE;

which are passed as the first parameter to all wrapper functions of non-const
and const, respectively, non-static class methods. Notice the use of opaqueClassName_Dummy
type: this is used for class type checking at compilation time as the C compiler will
generate warning for class type different from the type needed by the function.

To call a base class method for a child object user must pass to the wrapper
function a converted object pointer. Child class to base class conversion functions
are generated for all valid conversions by C++2Any .

7.2 Methods

The following code is generated for exported class. Each public method is wrapped
into the function:

int NamespaceName_ClassName_MethodName(...);

Please note that from here on, theNamespaceName_ClassName part may
be omitted in order to simplify the presentation.

The return value is alwaysint which is used as the success/failure indicator
as explained in section 7.7.

For static class members noClassHandle parameter is generated. It is
worth mentioning that if a class copy constructor and destructor are not declared,
appropriate wrapper functions are still generated because a C++ compiler gener-
ates default realizations of these functions. Moreover if no constructor is defined,
wrapper function for default constructor is generated. Wrapper functions for con-
structor have the following form:

int ClassName_Create(CLASSNAME_HANDLE* newobject, ...);

and for destructor:

int ClassName_Destroy(CLASSNAME_HANDLE* object);

18

Dra
ft

7.3 Parameters and Return Values

Simple types are passed as the parameters in the same way as in C++ code. Com-
plex types can be passed in three ways: by pointer, by reference and by value.
Let’s consider each of them. In case of passing parameters by pointer or by refer-
ence for functions:

func(..., SomeClass *a, ...);
func(..., SomeClass &a, ...);

the following wrapper is generated:

func(..., SOMECLASS_HANDLE a, ...);

In case of passing parameters by value for a function:

func(..., SomeClass a, ...);

the following function is generated:

func(..., CONST_SOMECLASS_HANDLE a, ...);

For passing such parameters asconst SomeClass , CONST_COMECLASS_HANDLE
is used.

For a function returning a value the last parameter is used for passing it to the
caller. For simple types it should be a pointer to a variable of this type created by
user, to which a return value will be assigned. Returning a reference is a special
case. It’s substituted by returning a pointer because there are no references in
C language. Such parameter isn’t generated for functions returningvoid . For
example:

void func(...);
int intFunc(...);
float* floatprtFunc(...);
int& intrefFunc(...);
double SomeClass::doubleMethod(...);

are translated to:

int func(...);
int intFunc(..., int* result);
int floatprtFunc(..., float** result);
int intrefFunc(..., int** result);
int SomeClass_doubleMethod(SOMECLASS_HANDLE classHandle, ..., double* result);

19

Dra
ft

An interface to functions returning values of complex type is generated the
same way exceptSomeClass is substituted bySOMECLASS_HANDLEandconst
SomeSlass – by CONST_SOMECLASS_HANDLE. User should delete tempo-
rary object that is created inside the wrapper function and returned if the original
function returns object but not pointer or reference. This case will be pointed out
in the comment to the generated prototype of wrapper function. For example:

SomeClass* ptrFunc(...);
SomeClass& refFunc(...);
SomeClass func(...);

are translated to:

int ptrFunc(...,SOMECLASS_HANDLE* result);
int refFunc(..., SOMECLASS_HANDLE* result);
// NOTE: this function returns a temporary object,
// be sure to destroy it yourself
int func(..., SOMECLASS_HANDLE* result);

7.4 Class Members

Warning: This section is not implemented yet.
For public class members the following functions are generated. For simple

types:

class SomeClass { public: char m_Var; };

is translated to:

int Get_m_Var(CONST_SOMECLASS_HANDLE ClassHandle, char* Val);
int Set_m_Var(SOMECLASS_HANDLE ClassHandle, char Val);

For complex types only methodGet_m_Var() is generated. For example:

class SomeClass { public: SomeClass2 m_Var; };

is translated to

int Get_m_Var(SOMECLASS_HANDLE ClassHandle, SOMECLASS2_HANDLE* Val);

20

Dra
ft

7.5 Other Declarations

For typedefs and enums declared inside class declaration typedefs or enums named
NamespaceName_ClassName_TypedefName orNamespaceName_ClassName_EnumName
are generated. For the global typedefs and enums, theClassName part is omit-
ted.

In generated typedef complex types names are replaced by the appropriate
CLASS_HANDLEs.

7.6 Templates

We are not supporting export of non-specified templates. So template support is
limited to specified templates that are used in the part of C++ code that we are
exporting. The Name of such class is constituted from template name and names
of all its type parameters and values of constant parameters. For example:

SomeClass<char, 5>

will be translated into

SomeClass_char_5

7.7 Error Handling

As mentioned previously, all generated functions return an integer value which is
zero if the function has succeeded and non-zero error code in case of error. In the
latter case, the user can use the functions:

int GetErrorCode();
int GetErrorString(char* buf, int bufsize);
int GetExtendedErrorString(char* buf, int bufsize);

for obtaining the last error code and error description string.
buf parameter ofGetErrrorString andGetExtendedErrorString

is an user-allocated buffer for a error description string (extended description), and
bufsize parameter is the size of this buffer. If buffer size is less than needed
then the string is truncated. The function returns the necessary buffer length.

Note that any (unhandled) C++ exceptions are translated to C error codes as
well and that it is possible to return more rich error information to C code by using
one’s own exception classes.

21

